
FreeBSD Developer Summit
TrustedBSD: Audit + priv(9)

10 November 2006

Robert Watson

FreeBSD Project

Computer Laboratory
University of Cambridge

10 November 2006

TrustedBSD

● Audit
– Quick audit tutorial

– Adding audit support to new kernel features

– Userland audit work

● Privileges
– Priv(9) API

10 November 2006

Introduction to Audit

● Log of security-relevant events
– Secure

– Reliable

– Fine-grained

– Configurable

● A variety of uses including
– Post-mortem analysis

– Intrusion detection

– Live system monitoring, debugging

10 November 2006

Audit Basics

● Audit records describe individual events
– Attributable (to an authenticated user)

– Non-attributable (no authenticated user)

– Selected (configured to be audited)

● Most audit events fall into three classes
– Access control

– Authentication

– Security management

● Audit log files are called “trails”

10 November 2006

Auditable Events

● Access control
– System calls checking for super user privilege

– System calls with file system access control checks
● Including path name lookup!

– Login access control decisions

● Authentication, Account Management
– Password changes, successful authentication,

failed authentication, user administration

● Audit related events

10 November 2006

Audit Software Components

● Kernel audit event engine
– Event allocation, preselection, argument gathering,

event commit, queuing, worker thread, pipe system

● Kernel event gathering
– System calls, argument gathering

● OpenBSM
– Userland tools, library, configuration files

● Userland integration
– Login(1), su(1), sshd(8), ...

10 November 2006

BSM API and File Format

● Sun's Basic Security Module (BSM) de facto
industry standard
– File formats

● Token-oriented audit trail format (almost TLV)
● Audit configuration and databases

– APIs
● Construct, parse, process audit record streams
● Manage audit state, pre-selection model

● Compatibility with many existing libraries and
tools for free

10 November 2006

Record Format

header,129,1,AUE_OPEN_R,0,Tue Feb 21 00:12:23 2006, +
253 msec
argument,2,0,flags
path,/lib/libc.so.6
attribute,444,root,wheel,16842497,11663267,46706288
subject,-1,root,wheel,root,wheel,319,0,0,0.0.0.0
return,success,6
trailer,129

header,108,1,AUE_CLOSE,0,Tue Feb 21 00:12:23 2006, +
255 msec
argument,2,0x6,fd
attribute,444,root,wheel,16842497,11663267,46706288
subject,-1,root,wheel,root,wheel,319,0,0,0.0.0.0
return,success,0
trailer,108

Record header

Subject token

Return token

Trailer token

0 or more variable
argument tokens...

(paths, ports, ...)

10 November 2006

Audit Configuration: Pre-Selection

● Over 350 event types
– Most of them

meaningless
individually

● Each event assigned
to one or more
classes

● Class masks assigned
to users

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0x00000080:pc:process
0x00000100:nt:network
...

0:AUE_NULL:indir system call:no
1:AUE_EXIT:exit(2):pc
2:AUE_FORK:fork(2):pc
3:AUE_OPEN:open(2) - attr only:fa
4:AUE_CREAT:creat(2):fc
5:AUE_LINK:link(2):fc
6:AUE_UNLINK:unlink(2):fd
7:AUE_EXEC:exec(2):pc,ex
8:AUE_CHDIR:chdir(2):pc
...

root:lo:no
audit:lo:no
test:all:no
www:fr,nt,ip:no
...

10 November 2006

Sample Audit Control Flow

login uthread

login kthread

audit_worker
kthread

access()

Audit preselect,
possibly assign record

to thread, possibly
wait for queue space

Audit
permission
argument

Audit
pathname
argument

Audit result, preselect,
commit to record queue,

wake up worker

Convert
record
to BSM

Dequeue
audit

record

Commit
to disk

access()
returns

10 November 2006

Audit Queuing

Per-
thread
queue

User
processes Kernel

Stable
store

Audit
subsystem

queue

File system,
Buffer cache

10 November 2006

Audit Pipes

● Historically, audit for
post-mortem analysis

● Today, for intrusion
detection / monitoring

● Live record feed
– Lossy queue

– Discrete audit records

– Independent streams

– Interest model

process

process

Audit
subsystem

queue

File system,
Buffer cache

Audit pipe
queue(s)

10 November 2006

Tools, Setup, Etc

● Setup
– Compile in “options AUDIT”

– Set auditd_enable=”YES” in rc.conf

– Global settings: /etc/security/audit_control

– Per-user settings: /etc/security/audit_user

● Management
– Print audit trails: praudit

– Redice audit trails: auditreduce

● See handbook chapter, man pages for details

10 November 2006

Some Kernel Details

● Global kernel queue,
worker thread

● System call code
allocates, commits
record

● System calls capture
arguments

● New system calls
● New proc/thread state

struct thread {
...
struct kaudit_record *td_ar;
...

}

struct proc {
...
struct auditinfo p_au;
...

}

10 November 2006

Sample System Call: chmod(2)
14 AUE_MKNOD STD { int mknod(char *path, int mode, int dev); }
15 AUE_CHMOD STD { int chmod(char *path, int mode); }
16 AUE_CHOWN STD { int chown(char *path, int uid, int gid); }

int
kern_chmod(struct thread *td, char *path, enum uio_seg pathseg, int mode)
{
 int error;
 struct nameidata nd;
 int vfslocked;

 AUDIT_ARG(mode, mode);
 NDINIT(&nd, LOOKUP, FOLLOW | MPSAFE | AUDITVNODE1, pathseg, path, td);
 if ((error = namei(&nd)) != 0)
 return (error);
 vfslocked = NDHASGIANT(&nd);
 NDFREE(&nd, NDF_ONLY_PNBUF);
 error = setfmode(td, nd.ni_vp, mode);
 vrele(nd.ni_vp);
 VFS_UNLOCK_GIANT(vfslocked);
 return (error);
}

10 November 2006

System Call Audit Principles

● Assign audit event type in syscalls.master (etc)
● Argument data stored in thread's kaudit_record

– AUDIT_ARG(type/entry, value)

– NDINIT() flags

– kaudit_record has storage for various types

– Bitmask flags for each entry

– New types may have to be added

● Converted to BSM in audit worker thread

10 November 2006

Coordinating OpenBSM/Solaris/...

● Desirable to remain compatible with Solaris,
Mac OS X if possible

● OpenBSM in contrib, maintained in p4
– Event number allocation

– Selection of arguments to audit

– Changes in token stream format

– New user space APIs

10 November 2006

Userland Auditing

● Security-relevant tools should audit
– Currently, login, su, sshd, and some others do

– Requires root privilege

● Two API choices
– Constructed audit records using audit_open(3)

– Use audit_submit(3) to generate a generically
structured audit record

 if (audit_submit(AUE_su, auid, 1, EPERM,
 "bad su %s to %s on %s", username, user, mytty))
 errx(1, "Permission denied");

10 November 2006

TODO

● Finish syscall
assignments,
especially for ABIs

● Flesh out arguments
● Audit + NSS
● Userland sweep
● Ports/packages
● Language bindings

● Enhance pipe
preselection

● Multiple pipelines
● IDS/monitoring
● Distributed audit
● New parsing API

10 November 2006

Kernel Privilege API priv(9)

● Decompose UNIX security model
– UNIX process model

– Mandatory inter-user protections

– Discretionary access control

– Privilege model

– User model layered over kernel protections

● Privilege is the right to violate other policies
– Historically granted to processes with effective uid 0

– Scoped by secureleval, jail, MAC, etc.

10 November 2006

Replacing the Privilege API

● Existing privilege checks in the kernel
– error = suser(td)

– error = suser_cred(cred, flags)

● Reasons to replace suser(9)
– Offer finer granularity to decision code

– Allow auditing of privilege by type

– Virtual image privilege masks

– Centralize jail, securelevel policies

– Allow flexibility to configure, extend

10 November 2006

priv(9)

● Replace all instances of suser(9) with priv(9)
– priv_check(td, priv)

– priv_check_cred(cred, priv, flags)

● Priv is a named privilege
– PRIV_VFS_READ,

PRIV_NETINET_RESERVEDPORT, ...

● Long list of named privileges by subsystem
● Eventual goal of removing jail privilege flag
● MAC can now instrument privilege decision

10 November 2006

Where Do We Go From Here?

● Do not add new calls to suser(9) or
suser_cred(9)

● Where it makes sense, use an existing privilege
● Where it doesn't, add a new privilege
● When allowing or disallowing in jail, for now use

both SUSER_ALLOWJAIL and add to the
kern_jail.c:prison_priv_check() switch

● Help sweep up remaining calls to suser(), look
at the XXX comments first

